

ParallelQueue

A SimPy Extension for parallel queueing systems and routing.

Contents:

	 Introduction to SimPy and DES

	 Module Documentation
	 Model Components

	 Standard Parallelization Models

	 Monitors

	 Examples
	Join the Shortest Queue

This package aims to allow for easier implementation of novel parallel processing
approaches in Python DES packages (especially SimPy).

Installation

From PyPi:

pip install parallelqueue

From git repository:

git clone https://github.com/aarjaneiro/ParallelQueue
cd ParallelQueue
python setup.py install

Current Goals

	Introduce more common models into base_models.

	Optimize SimPy boilerplate common to all models by incorporating Cython.

	Incorporate https://github.com/tqdm/tqdm for better progress visualization and simulation parallelization.

Interested in Contributing?

Do feel free to write an issue or submit a PR! If you are interested co-maintaining this package with me, please email me at
ajstone@uwaterloo.ca (merely include a brief description of your familiarity with Python and Queueing Theory).

References

	Heavy Traffic Analysis of the Mean Response Time forLoad Balancing Policies in the Mean Field Regime
	Tim Hellemans, Benny Van Houdt (2020)

https://arxiv.org/abs/2004.00876

	Redundancy-d:The Power of d Choices for Redundancy
	Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf,
Mark Velednitsky, Samuel Zbarsky (2020)

https://doi.org/10.1287/opre.2016.1582

Indices and tables

	Index

	Module Index

	Search Page

SimPy Introduction

SimPy is a Discrete Event Simulation (DES) package for Python. DES refers to a simulation system which will periodically introduce a specified event as it runs, discrete insofar as each event can be thought of as “happened” or “not happened (yet, or ever)”.

In SimPy, the DES system is contained within its Environment class. The user specifies a system which will run for the Environment upon executing Environment.run().

Within the Environment , the user can define Process and Resource objects which will dynamically interact as the DES is run. In particular, Process objects are the generators of the discrete events we will be working with while a Resource defines an object to be interacted with in this DES “universe”.

In Python, generator objects can be thought of as distinct from functions. Whereas functions have the form of (for some manipulation, foo(a), like a+2):

def function(a):
 return foo(a)

generators have the form of:

def generator(a):
 yield foo(a)

where yield instead denotes a single output which will not cause the generator itself to stop being considered. To make this clear, it is possible to have:

def generator(a):
 yield foo(a)
 print('Wait, I forgot this!')
 yield bar(a)

which is useful for an object which will be existing in our universe for a period of time. Return would instead immediately end the function and output foo(a). For a more concrete example, consider:

def generator(a):
 yield print(a)
 print('Wait, I forgot this!')
 yield print(a + 1)
 gen = generator(1)

which, when evaluating with the next command, gives us:

>>> next(gen)
1
>>> next(gen)
Wait, I forgot this!
2

In the end, we now have a way to progress an object in some form of time by taking “steps”.

Module Documentation

Contents:

	 Model Components

	 Standard Parallelization Models

	 Monitors

Model Components

Basic building components (generators/processes) for parallel models. In general, the framework allows one to build
a model by defining an arrival, routing, and job/servicing process such that work is introduced in the order of
Arrivals->Router->Job/Servicing.

	
class parallelqueue.network.Network(**kwargs)

	The Network constructor allows a user to create a queueing network by overriding each member.
Upon generation, jobs flow through a network in the order of: Arrivals → Router → Job. By default, the Network class
can be used to handle JSQd, Redundancy-d, and Threshold-(d,r) models with general arrival and service distributions.

	
Arrivals(system, env, number, queues, **kwargs)

	This generator/process defines how jobs enter the network

	
static Job(system, env, name, arrive, queues, choice, **kwargs)

	This generator/process defines the behaviour of a job (replica or original) after routing.

	
Router(system, env, name, queues, **kwargs)

	This generator/process specifies the scheduling system used.

	
parallelqueue.arrivals.DefaultArrivals(router, system, env, number, queues, **kwargs)

	General arrival process; interarrival times are defined by the given distribution

	Parameters

	
	router – Router process.

	system (base_models.ParallelQueueSystem) – System providing environment.

	env (simpy.Environment) – Environment for the simulation

	number (int) – Max numberJobs of jobs if infiniteJobs is false.

	queues (List[simpy.Resource]) – A list of all queues making up the parallel system.

	
parallelqueue.routers.DefaultRouter(job, system, env, name, queues, **kwargs)

	Specifies the scheduling system used. If replication is enabled, this router tracks
each set of replicas using a base_models.ParallelQueueSystem.ReplicaDict which can be accessed
by network.Network.Job processes.

	Parameters

	
	job – Job process.

	system (base_models.ParallelQueueSystem) – System providing environment.

	env (simpy.Environment) – Environment for the simulation.

	name (str) – Identifier for the job.

	queues (List[simpy.Resource]) – A list of queues to consider.

	
parallelqueue.routers.NoInSystem(R)

	Total number of Jobs in the resource R.

	
parallelqueue.routers.QueueSelector(d, parallelism, counters)

	The actual queue selection logic.

	
parallelqueue.jobs.DefaultJob(system, env, name, arrive, queues, choice, **kwargs)

	For a redundancy model, this generator/process defines the behaviour of a job (replica or original) after
routing.

	Parameters

	
	system (base_models.ParallelQueueSystem) – System providing environment.

	env (simpy.Environment) – Environment for the simulation

	name (str) – Identifier for the job.

	queues (List[simpy.Resource]) – A list of queuesOverTime.

	arrive (float) – Time of job arrival (before replication).

	choice (int) – The queue which this replica is currently in

Standard Parallelization Models

Generators and simulation environments included under base_models focus on the modelling of JSQ(d), Redundancy-d and Threshold-d routing schemes based on queue size.

	
parallelqueue.base_models.JSQd(parallelism, seed, d, Arrival, AArgs, Service, SArgs, Monitors=[<class 'parallelqueue.monitors.TimeQueueSize'>], r=None, maxTime=None, doPrint=False, infiniteJobs=True, numberJobs=0)

	A queueing system wherein a Router chooses the smallest queue of d sampled (identical) queues to join for
each arriving job.

	Parameters

	
	maxTime – If set, becomes the maximum allotted time for this simulation.

	numberJobs – Max number of jobs if infiniteJobs is False. Will be ignored if infiniteJobs is True.

	parallelism – Number of queues in parallel.

	seed – Random number generation seed.

	r – Threshold. Should be set to an integer, defaulting to None otherwise.

	infiniteJobs – If true, there will be no upper limit for the number of jobs generated.

	d – Number of queues to parse.

	doPrint – If true, each event will trigger a statement to be printed.

	Arrival – A kwarg specifying the arrival distribution to use (a function).

	AArgs – parameters needed by the function.

	Service – A kwarg specifying the service distribution to use (a function).

	SArgs – parameters needed by the function.

	Monitors – List of monitors which overrides the methods of monitors.Monitor

	
class parallelqueue.base_models.ParallelQueueSystem(parallelism, seed, d, r=None, maxTime=None, doPrint=False, infiniteJobs=True, Replicas=True, numberJobs=0, network=<class 'parallelqueue.network.Network'>, **kwargs)

	A queueing system wherein a Router chooses the smallest queue of d sampled (identical) queues to join,
potentially replicating
itself before enqueueing. For the sampled queues with sizes less than r, the job and/or its clones will join
while awaiting
service. After completing service, each job and its replicas are disposed of.

	Parameters

	
	maxTime – If set, becomes the maximum allotted time for this simulation.

	numberJobs – Max number of jobs if infiniteJobs is False. Will override infiniteJobs if infiniteJobs is True.

	parallelism – Number of queues in parallel.

	seed – Random number generation seed.

	r – Threshold. Should be set to an integer, defaulting to None otherwise.

	infiniteJobs – If true, there will be no upper limit for the number of jobs generated.

	df – Whether or not a pandas.DataFrame of the queue sizes over time should be returned.

	d – Number of queues to parse.

	doPrint – If true, each event will trigger a statement to be printed.

	Arrival – A kwarg specifying the arrival distribution to use (a function).

	AArgs – parameters needed by the function.

	Service – A kwarg specifying the service distribution to use (a function).

	SArgs – parameters needed by the function.

	Monitors – Any monitor which overrides the methods of monitors.Monitor

	Network – Network class which defines the structure of the system.

Example

Specifies a SimPy environment consisting
of a Redundancy-2 queueing system and a Poisson arrival process.
sim = ParallelQueueSystem(maxTime=100.0,
 parallelism=100, seed=1234, d=2, Replicas=True,
 Arrival=random.expovariate, AArgs=0.5,
 Service=random.expovariate, SArgs=1)
sim.RunSim()

References

	Heavy Traffic Analysis of the Mean Response Time for Load Balancing Policies in the Mean Field Regime
	Tim Hellemans, Benny Van Houdt (2020)
https://arxiv.org/abs/2004.00876

	Redundancy-d:The Power of d Choices for Redundancy
	Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf,
Mark Velednitsky, Samuel Zbarsky (2017)
https://doi.org/10.1287/opre.2016.1582

	
property DataFrame

	If TimeQueueSize was a monitor, returns a dataframe of queue sizes over time.

	
property MonitorOutput

	The data acquired by the monitors as observed during the simulation.

	
RunSim()

	Runs the simulation.

	
parallelqueue.base_models.RedundancyQueueSystem(parallelism, seed, d, Arrival, AArgs, Service, SArgs, Monitors=[<class 'parallelqueue.monitors.TimeQueueSize'>], r=None, maxTime=None, doPrint=False, infiniteJobs=True, numberJobs=0)

	A queueing system wherein a Router chooses the smallest queue of d sampled (identical) queues to join,
potentially replicating
itself before enqueueing. For the sampled queues with sizes less than r, the job and/or its clones will join
while awaiting
service. After completing service, each job and its replicas are disposed of.

	Parameters

	
	maxTime – If set, becomes the maximum allotted time for this simulation.

	numberJobs – Max number of jobs if infiniteJobs is False. Will be ignored if infiniteJobs is True.

	parallelism – Number of queues in parallel.

	seed – Random number generation seed.

	r – Threshold. Should be set to an integer, defaulting to None otherwise.

	infiniteJobs – If true, there will be no upper limit for the number of jobs generated.

	d – Number of queues to parse.

	doPrint – If true, each event will trigger a statement to be printed.

	Arrival – A kwarg specifying the arrival distribution to use (a function).

	AArgs – parameters needed by the function.

	Service – A kwarg specifying the service distribution to use (a function).

	SArgs – parameters needed by the function.

	Monitors – List of monitors which overrides the methods of monitors.Monitor

Example

Specifies a SimPy environment consisting
of a Redundancy-2 queueing system and a Poisson arrival process.
sim = RedundancyQueueSystem(maxTime=100.0,
 parallelism=100, seed=1234, d=2,
 Arrival=random.expovariate, AArgs=0.5,
 Service=random.expovariate, SArgs=1)
sim.RunSim()

Monitors

As simulations run, the Monitor class interacts with the main environment, gathering data at certain intervals

This module contains methods for monitoring and visualization. As simulations run, the Monitor class interacts with
the main environment, gathering data at certain intervals. Moreover, the Monitor class was designed to be general
enough
so that one can build their own by overriding its Name and its data-gathering Add function.

	
class parallelqueue.monitors.JobTime

	Tracks time of job entry and exit.

	
class parallelqueue.monitors.JobTotal

	Tracks total time each job/set spends in system.
To get the mean time each job/set spends:

Example

from monitors import JobTotal
import pandas as pd
sim = base_models.RedundancyQueueSystem(maxTime=100.0, parallelism=10, seed=1234, d=2, Arrival=random.expovariate,
 AArgs=0.5, Service=random.expovariate, SArgs=0.2, doPrint=True, Monitors = [JobTotal])
sim.RunSim()
totals = sim.MonitorOutput["JobTotal"]
mean = pd.Series(totals, index = totals.keys()).mean()

	
class parallelqueue.monitors.Monitor

	Base class defining the behaviour of monitors over ParallelQueue models.
Unless overridden, the return of this class will be a dict of values.

Note

In general, if you need data not provided by any one of the default implementations,
you would fare better by overriding elements of Monitor as needed. This is as
opposed to calling a collection of monitors which will then need to update frequently.

	
class parallelqueue.monitors.ReplicaSets

	Tracks replica sets generated over time, along with their times of creation and disposal.

	
class parallelqueue.monitors.TimeQueueSize

	Tracks queue sizes over time.

Examples

Join the Shortest Queue

This example is a translation of this example [https://pythonhosted.org/SimPy/Tutorials/TheBank.html#several-counters-with-individual-queues] from SimPy Classic. In this scenario, we are implementing what is known as the Join the Shortest Queue (JSQ) algorithm, wherein a job will choose the queue with the smallest wait time. In our DES universe, the jobs will be “Customers” and the servers will be “Counters” at a bank. There are two counters currently servicing patrons and the patrons are smart enough to not to join the bigger of the two lines.

To start, let us run our system until either 30 customers are generated and complete their time in the environment or if some period of time (400 arbitrary units of time) have passed. Let us also choose an average time for each customer to spend in the bank and the mean of our arrival process. For simplicity, we will assume both the service and arrival processes to be exponential.

from parallelqueue.base_models import JSQd
from parallelqueue.monitors import TimeQueueSize
from random import expovariate

sim = JSQd(parallelism=2, seed=123, d=1, Arrival=expovariate, AArgs=0.10,
 Service=expovariate, SArgs=0.12, maxTime=400,
 numberJobs=30, Modules=[TimeQueueSize])
Note that because numberJobs is conditional on infiniteJobs being false,
we manually specify so before running the simulation.
sim.RunSim()

Now, with our dataframe, we can visualize the queue loads over time by running:

from matplotlib import pyplot as plt
sim.DataFrame.plot()
plt.show()

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 parallelqueue	

 	
 	
 parallelqueue.arrivals	

 	
 	
 parallelqueue.base_models	

 	
 	
 parallelqueue.jobs	

 	
 	
 parallelqueue.monitors	

 	
 	
 parallelqueue.network	

 	
 	
 parallelqueue.routers	

Index

 A
 | D
 | J
 | M
 | N
 | P
 | Q
 | R
 | T

A

 	
 	Arrivals() (parallelqueue.network.Network method)

D

 	
 	DataFrame (parallelqueue.base_models.ParallelQueueSystem property)

 	DefaultArrivals() (in module parallelqueue.arrivals)

 	
 	DefaultJob() (in module parallelqueue.jobs)

 	DefaultRouter() (in module parallelqueue.routers)

J

 	
 	Job() (parallelqueue.network.Network static method)

 	JobTime (class in parallelqueue.monitors)

 	
 	JobTotal (class in parallelqueue.monitors)

 	JSQd() (in module parallelqueue.base_models)

M

 	
 	
 module

 	parallelqueue.arrivals

 	parallelqueue.base_models

 	parallelqueue.jobs

 	parallelqueue.monitors

 	parallelqueue.network

 	parallelqueue.routers

 	
 	Monitor (class in parallelqueue.monitors)

 	MonitorOutput (parallelqueue.base_models.ParallelQueueSystem property)

N

 	
 	Network (class in parallelqueue.network)

 	
 	NoInSystem() (in module parallelqueue.routers)

P

 	
 	
 parallelqueue.arrivals

 	module

 	
 parallelqueue.base_models

 	module

 	
 parallelqueue.jobs

 	module

 	
 	
 parallelqueue.monitors

 	module

 	
 parallelqueue.network

 	module

 	
 parallelqueue.routers

 	module

 	ParallelQueueSystem (class in parallelqueue.base_models)

Q

 	
 	QueueSelector() (in module parallelqueue.routers)

R

 	
 	RedundancyQueueSystem() (in module parallelqueue.base_models)

 	ReplicaSets (class in parallelqueue.monitors)

 	
 	Router() (parallelqueue.network.Network method)

 	RunSim() (parallelqueue.base_models.ParallelQueueSystem method)

T

 	
 	TimeQueueSize (class in parallelqueue.monitors)

 nav.xhtml

 Table of Contents

 		
 ParallelQueue

 		
 Introduction to SimPy and DES

 		
 Module Documentation

 		
 Model Components

 		
 Standard Parallelization Models

 		
 Monitors

 		
 Examples

 		
 Join the Shortest Queue

_static/minus.png

_static/plus.png

_static/file.png

